博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Cognitive Security的异常检测技术
阅读量:6468 次
发布时间:2019-06-23

本文共 2675 字,大约阅读时间需要 8 分钟。

最近,Cisco重返网络安全的一个标志性收购就是买下了位于捷克的Cognitive Security公司。这家由捷克一所大学老师创立的startup公司有啥看家的本领呢?呵呵,原来就是DFI,或者说是基于流量的异常检测技术。

Cognitvie的目标很明确,就是检测APT,还有0-day攻击,以及其他多态恶意代码。

Cognitive用到了以下基于异常的检测算法,不是什么新的算法,但是他们做到了实用化。

Cognitive Analyst's products and services utilize a multi-stage detection algorithm to generate a Cognitive Trust Score (CTS), which is effectively a measure of ''Trustfulness' to the data which is being analyzed. Currently eight stages are used to increase the detection and accuracy of threats, and collectively generate an accurate CTS for an analyst to action and subsequently mitigate against an attack. A selection of these algorithms are summarized as follows:

  • MINDS algorithm [Ertoz et al, 2004] 【一种基于源/目标分析的入侵检测算法】The Minnesota Intrusion Detection System (MINDS) processes data from a number of flows: 1. Data from a single source IP to multiple destinations, 2. flows from multiple sources to a single destination, or 3. a series of flows between a single source to a single destination.
  • Xu et al. algorithm [Xu, Zhang et al, 2005] 【一种流量源分类算法】This algorithm serves to classify traffic sources. A normalized entropy is established (i.e. establishing meaningful analysis to the apparent randomness of a data set), determined by applying static classification rules to the established normalized states.
  • Volume prediction algorithm [Lakhina et al, 2004] 【流量预测算法】uses the Principal Components Analysis (PCA) methodology, which is a mathematical procedure used to formulate predictive models. In order to build a model of traffic volumes from individual sources, values are determined based on the number of flows, bytes, and packets generated from each source. The PCA method then identifies the complex relationships between the traffic originating from distinct sources.
  • Entropy prediction algorithm [Lakhina et al, 2005]【熵预测算法】 This algorithm is similar to the PCA-based traffic modeling discussed above, but uses different features than just volume prediction. Entropy prediction aggregates traffic from source IPs, but instead of processing traffic volumes, it predicts the entropy of source and destination ports, and destination IPs.
  • TAPS algorithm [Sridharan et al, 2006]【一种流量逐层分析算法】 targets a specific class of attacks by classifying a subset of suspicious traffic sources and characterizing them by three features: 1. the number of destination IP addresses, 2. the number of ports in the set of flows from the source, and 3. the entropy of the flow size. The anomaly of the source is based on the ratios between these values.

其实,对于这类技术,我已经多次提到过了。我们也在这方面做出了很多努力和工作,并且也已经用到了我们的产品之中。

【参考】

     本文转自叶蓬 51CTO博客,原文链接:http://blog.51cto.com/yepeng/1131862,如需转载请自行联系原作者

你可能感兴趣的文章
mysql的数据类型int、bigint、smallint 和 tinyint取值范围
查看>>
移动铁通宽带上网设置教程
查看>>
Python算法(含源代码下载)
查看>>
利用Windows自带的Certutil查看文件MD5
查看>>
通过原生js添加div和css
查看>>
查询指定名称的文件
查看>>
AJAX POST&跨域 解决方案 - CORS
查看>>
开篇,博客的申请理由
查看>>
Servlet 技术全总结 (已完成,不定期增加内容)
查看>>
[JSOI2008]星球大战starwar BZOJ1015
查看>>
centos 7 部署LDAP服务
查看>>
iOS项目分层
查看>>
IntelliJ IDEA 注册码
查看>>
String字符串的截取
查看>>
DynamoDB Local for Desktop Development
查看>>
Shell编程-环境变量配置文件
查看>>
[Unity3d]DrawCall优化手记
查看>>
Struts2和Spring MVC的区别
查看>>
理解Javascript参数中的arguments对象
查看>>
p2:千行代码入门python
查看>>